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Abstract. A collocation method is presented for solving a singular integral equation of the second kind arsing
in the slender-body approximation of viscous flow past slender bodies. When the spectral representation of the
integral operator is explicitly known, the collocation method is shown to recover the spectrum of the continuous
operator. The approximation error is estimated for two discretizations of the integral operator, and convergence is
proved. The collocation scheme is validated for several test cases and extended to situations where the spectrum
is not explicitly known.

Key words: collocation method, slender-body approximation, singular integral equation.

1. Introduction

Artificial fibers such as Nylon are typically produced by the so-called wet-spinning [1] or
melt-spinning [2–5] process. In the melt-spinning process, the molten polymer granulate is
pressed through an array of circular nozzles called the spinneret, and the polymer jet produced
by each nozzle enters a vertical cooling chamber and solidifies. To speed up the cooling
process, a light air stream with a velocity less than 1 m/s is blown against the fibers. At
the end of the cooling chamber (after approximately 3 to 5 m), the finished fibers are wound
up by spindles. Simulation of the fiber formation and fiber-air interaction is an important tool
for increasing the production rate and monitoring quality. Since the fibers have curved shapes
and a varying radius along their longitudinal coordinate, the calculation of the force that the
exterior flow with Reynolds number based on fiber radius ≈ 0·1 to 1 exerts on such a slender
object with length-to-radius ratio ≈ 105 –106 is both an important and non-trivial task. Similar
problems arise in rheological investigations of fiber-reinforced materials [6–8] where slender
glass-fibers (length-to-radius ratio ≈ 103) are embedded in a polymer. To simulate the flow
of such a composite material, one needs to understand the motion of the glass fibers in the
surrounding polymer, and estimate the forces exerted onto them. Phase transitions of liquid
crystals [9] lead to similar problems. The interaction of tissues fibers with a blood stream [10]
and animal locomotion [11] are additional examples drawn from the field of biofluiddynamics.

In these technological and biological processes, it is important to understand the interaction
of long, slender and curved fibers with the surrounding fluid. The numerical calculation of the
forces acting on a fiber is a key point in the simulations. Asymptotically, the force acting on a
slender particle can be described by an integral equation [12]. In [13,14], exact solutions were
provided for some test cases. In [5,15], the spectral properties of the underlying integral opera-
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tor were investigated. However, a numerical treatment of the asymptotic integral equation (1),
and of similar integral equations arising in Selliers’s approach see [14, Equation (4.11)], is
needed. As an alternative to the collocation method presented here, a Galerkin-type method is
described in [16].

In Section 2 we briefly describe the integral-equation model for the interaction force den-
sity in the case of linearized flow and discuss available theoretical results [5,14,15]. A col-
location method for solving the integral equation in the case of a straight fiber is presented
in Section 3. The approximation error of this scheme is estimated in Section 3.2, and it is
shown to be of second order in the spatial grid size h. In Section 3.3 the scheme is shown
to reproduce the spectrum of the operator S. Convergence is proved in Section 3.4. The
discretization of the general equation for curved fibers is discussed in Section 4. Comparisons
of numerical solutions based on the proposed collocation scheme with spectral methods for
test cases considered by other authors are presented in Section 5. Proofs of some identities are
presented in the Appendix.

2. An integral equation for the force density acting on a fiber

Asymptotically, a slender fiber immersed in a viscous fluid can be viewed as an one-dimen-
sional object with infinitesimal cross-section. Assuming linearized hydrodynamics, we ex-
press the flow field as a superposition of fundamental solutions, so-called Stokeslets [13],
placed along the centerline of the fiber. Matching asymptotic expansions and applying the
no-slip condition on the fiber surface we obtain a Fredholm integral equation of the second
kind for the distribution of the fundamental solutions [5,12] which can be used to determine
the force that the fluid exerts onto the fiber.

For a long, slender fiber with circular cross-section exposed to a free-flow, the integral
equation for the force density ϕ acting on the fiber satisfies the equation (Appendix A)

8πµ (u0(s)− u∞(s)) =

C(s)ϕ(s)+
∫ 1

0

(
ϕ(t)

R0
− ϕ(s)

|s − t| +
M0ϕ(t)

R3
0

− ete
′
tϕ(s)

|s − t|
)

dt + O(a),
(1)

where u0 is the velocity of the fiber, u∞ is a free-stream velocity profile, µ > 0 is the viscosity
of the fluid, and s ∈ [0, 1] is the arc length parameter normalized by the total length of the
fiber. The function C : [0, 1] → R

3×3 is given by C(s) = (I+ete′
t )+(I−3ete′

t ), where, I is the
identity matrix in R

3×3, et ∈ R
3 is the unit tangent vector to the fiber’s centerline (depending

on s), and e′
t is its transpose. The function L(s) = log s(1−s)

4a2ρ2(s)
depends on the slenderness ratio

a � 1 and the local radius ρ(s) of the fiber. The distance between two points x0(t) and x0(s)

on the centerline x0 : [0, 1] → R
3 is denoted by R0 = ‖R‖2, where R0 = x0(t) − x0(s).

The matrix M0 ∈ R
3×3 is defined by M0 = R0R0

′. Strictly speaking R0,R0 and M0 depend
on both s and t . However, to simplify the notation, we skip this dependence henceforth. The
unknown vector-valued function ϕ(s) is the force per unit length acting on the fiber.

A detailed derivation of the integral equation (1) in the case of Stokes’s and Oseen’s
equation can be found in [5]. Alternatively, Sellier [14] derives the surface stress by solving
asymptotically a Fredholm integral equation of the first kind.

The integral equation (1) is valid away from the ends of the body, but the neglected end
effects are important only at higher-order approximations [17,18]. In [13, 17, 18] it was ar-
gued, that the force distribution ϕ should be defined only on same interior part [α, β] with
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0 < α < β < 1 of the centerline. The numerical scheme presented in Section 3 takes this into
account, since the collocation points are placed at the mid-points of the grid cells rather than
at the end-points.

In particular, if a straight fiber moving with a velocity u0 is exposed to an uniform free-flow
u∞ normal to it, we obtain the scalar equation

(C + S)[ϕ] = f, and S[ϕ](s) =
∫ 1

0

ϕ(t)− ϕ(s)

|t − s| dt, (2)

where C(s) = log(s(1 − s)/a2ρ2(s)) + 1 and f = 8πν(u0(s) − u∞(s)) in Equation (1).
Considering a fiber with ellipsoidal shape, i.e. ρ(s) = k

√
s(1 − s) for some k > 0, the

function C(s) reduces to a constant c > 0 [5,12].
Some of the assumptions made in deriving (1) can be relaxed; we can allow for a non-

circular cross-section of the fiber [14, 19–21]. As mentioned in the introduction, in the indus-
trial application of fiber spinning the case of circular cross-sections is especially relevant.

An extension of the theory to Oseen flow and to heat transport around a heated fiber is
also possible [5]. Both Oseen’s equation (for the flow-field) and the heat-conduction equation
including linearized convection, yield similar integral equations.

2.1. THEORETICAL RESULTS FOR EQUATION (2)

In [5,15], a complete theory of (2) was developed. The results are based on the knowledge of
the spectrum of eigenvalues of the integral operator S :

σ (S) = {−Lk : k ∈ N0}, (3)

given by Lk = ∑k
i=1 2/i for k ∈ N and L0 = 0. The associated eigenfunctions are the

Legendre polynomials Pk rescaled to the interval [0,1], S(Pk) = −LkPk . This knowledge
suggests the application of spectral methods to solve (2). In [5,15], conditions for the existence
and uniqueness of solutions ϕ belonging to L2 as well as C1 are established.

However, in the general case (1), neither the spectrum nor the eigenfunctions of the inte-
gral operator are available, and spectral techniques cannot be applied. Moreover, because the
integral operator is unbounded, computing the solution via successive approximations (see for
example [12]) is not possible.

The main purpose of the present work is to provide a sound numerical method for solving
the integral equation (1). In Section 3, a collocation method for the case corresponding to (2)
is proposed, and then extended to the general case in Section 4.

3. Collocation schemes

Following the basic idea of the collocation method, we replace the continuous equation (2)
with a finite number of equations (C+S)[ϕ](χ) = f (χ) applied at collocation points χ ∈ X.
Choosing an appropriate space of ansatz functions and a suitable numerical quadrature, we can
approximate the integral operator S with a matrix S0, and the multiplication operator C with
another matrix C. Solving the resulting system of linear algebraic equations (C + S0)ψ = f

we obtain an approximation ψ for ϕ.
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3.1. NOTATION

Let n ∈ N. We define an equidistant grid on the interval [0, 1] with a mesh width h = 1/n
and grid nodes si = ih for i = 0, . . . , n. This grid defines the cells Zi = [si−1, si) for
i = 1, . . . , n − 1 and Zn = [sn−1, sn]. Their mid-points are denoted by χi = (i − 1/2)h for
i = 1, . . . , n, and the set of collocation points is denoted by X = {χi, i = 1, . . . , n}.

Let I ⊂ R denote an interval. In the following we will need the function spaces

B(I ) :=
{
f : I �→ R : ‖f ‖∞ := sup

x∈I
|f (x)| ≤ ∞

}
,

Ck(I ) := {f : I �→ R : f is k-times continuously differentiable},
Pn := {f : I �→ R : f is a polynomial of maximal degree n},
P

pw
n := {f : I �→ R : f |Zi ∈ Pn for all grid cellsZi, i = 1, . . . , n}.

The restriction and an extension operator that map functions from the interval [0, 1] onto
the collocation points and vice versa can now be defined on the appropriate function spaces
as follows. Let ϕ ∈ B[0, 1]. We define the restriction operator R : B[0, 1] �→ R

n by
(R[ϕ])i := ϕ(χi), where R[ϕ] is called the grid function associated with ϕ. For ψ ∈ R

n,
the piecewise constant extension operator E0 : R

n �→ P
pw
0 is defined by (E0[: ψ])(s) := ψi

for s ∈ Zi and i = 1, . . . , n.
Since a grid function can be identified with a vector in R

n, we use the norms

‖ψ‖p :=
(

n∑
i=1

|ψi|p
)1/p

, 1 ≤ p <∞,

‖ψ‖ := max
i=1,... ,n

|ψi|.
Regarding the concatenation of the restriction and extension operator, we obtain the fol-

lowing two properties:

R ◦ E0 = I,

‖(E0 ◦ R)[ϕ] − ϕ‖∞ ≤ h‖ϕ′‖∞ ∀ϕ ∈ C1[0, 1],
where I is the identity matrix in R

n×n.
Integrals will be evaluated numerically by applying the mid-point rule. According to [22,

p. 171], the error estimate∫ b

a

f (x) dx = f

(
a + b

2

)
(b − a)+ (b − a)3

24
f ′′(ξ) (4)

holds for functions f ∈ C2[a, b] and some intermediate point ξ ∈ [a, b].
In subsequent sections, we will discuss two different discretizations of the integral operator

S. Both discretizations are based on a piecewise constant approximation to the function ϕ.
Since we choose our collocation points χ ∈ X to be the mid-points of the grid cells Z, it
is quite natural to approximate the integral by the mid-point rule. This approach yields the
approximation S0:

S0 := E0S0R, where (S0ψ)j :=
∑
i �=j

ψi − ψj

|χi − χj |h. (5)
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Substituting the piecewise constant extension of a grid function in the integral operator S
yields the alternative approximation S̃0:

S̃0 := SE0R, S̃0 = RSE0 and (S̃0ψ)j :=
∑
i �=j
(ψi − ψj)

∣∣∣∣log
si − χj

si−1 − χj

∣∣∣∣ . (6)

In contrast to the operator S0 that uses the mid-point rule for the integration, the operator S̃0

performs an exact integration.
The multiplication operator C is approximated by

Ci,j := C(χi)δi,j . (7)

3.2. APPROXIMATION ERRORS OF THE COLLOCATION SCHEMES

Using the approximation (5) based on mid-point integration, one obtains for sufficiently smooth
functions second-order accuracy in the collocation points χ ∈ X:

en := ‖(R ◦ S)[ϕ] − S0(Rϕ)‖ ≤ Kh2, (8)

with a constant K ≤ ‖ϕ′′′‖∞/72 + ‖ϕ′′‖∞/8. The proof of Equation (8) can be found in
Appendix B.

Now the question arises, as to whether this second-order method is super-convergent in
the collocation points or uniform. The term ‘super-convergent’ expresses the property, that
collocation methods can yield a higher approximation and convergence order in the collo-
cation points than on the rest of the interval [23, pp. 133–134]. Assume that s ∈ Zj for
j ∈ {1, . . . , n}. Following the proof of (8), we split the integral into its different parts. For the
integral over Zj , we obtain

∫ sj
sj−1

,s(t) dt = ϕ′(s)(sj + sj−1 − 2s) + ϕ′′(ξs,−)
(s − sj−1)

2

4
+ ϕ′′(ξs,+)

(s − sj )
2

4≤ K‖ϕ′‖∞h.
This already gives a hint on the super-convergence of the piecewise constant approximation
for cell-centered collocation. A detailed analysis, similar to the proof of (8) shows

‖S[ϕ] − S0[ϕ]‖∞ ≤ Kh (9)

for some K > 0.
Concerning the alternative approximation S̃0 involving analytic calculation of the integrals,

one might expect a better approximation, since the integration is performed exact rather than
applying the mid-point rule. Surprisingly, this is not the case, and we find :

ẽn :=
∥∥∥(R ◦ S)[ϕ] − S̃0(Rϕ)

∥∥∥ ≤ Kh log
1

h
, (10)

where K > 0 is some constant. The derivation of (10) is deferred to Appendix C.
Similar to (9), one can show that the operator S̃0 approximates the operator S up to first

order over the whole interval [0,1].
Table 1 shows results for the approximations S0 and S̃0 using as test cases

S[ϕ](s) = −Lnsn +
n−1∑
k=0

1

n− k
sk for ϕ(s) = sn, (11)



208 Thomas Götz

Table 1. Absolute error and convergence rates in the collocation points
for the test cases (11) using the approximations S0 (5) and S̃0 (6)

Approximation S0

ϕ(s) n = 50 n = 100 n = 200 γ

s3 2·64 × 10−4 6·64 × 10−5 1·66 × 10−5 2·00

s2 1·00 × 10−4 2·50 × 10−5 6·25 × 10−5 2·00

s1 1·53 × 10−15 3·33 × 10−15 5·11 × 10−15

1 3·48 × 10−15 7·91 × 10−15 1·14 × 10−14

Approximation S̃0

ϕ(s) n = 50 n = 100 n = 200 γ

s3 8·76 × 10−3 4·47 × 10−3 2·26 × 10−3 0·98

s2 5·96 × 10−3 3·02 × 10−3 1·52 × 10−3 0·99

s1 3·03 × 10−3 1·53 × 10−3 7·63 × 10−4 1·00

1 1·37 × 10−15 2·04 × 10−15 2·73 × 10−15

where −Ln = −∑n
k=1 2/k for n ∈ N0 and L0 = 0 are the eigenvalues of S (see Equation (3)).

The errors en and ẽn are defined in Equations (8) and (10). The numerical convergence orders
γ and γ̃ are defined as

γn := log2
en/2

en
, γ̃n := log2

ẽn/2

ẽn
,

where log2 denotes the base-2 logarithm with respect to base 2. The expected O(h2)-error in
the collocation points for the mid-point rule (operator S0) is clearly visible, as is the almost
linear convergence for the method involving exact calculation of the integrals (operator S̃0).
For ϕ(s) = 1 and ϕ(s) = s, the mid-point rule is exact up to machine precision, whereas the
second method is exact only for the trivial constant case.

3.3. SPECTRAL PROPERTIES

The discrete spectrum and associated eigenfunctions of the continuous operator S are explic-
itly known. One of the major results of the present work is, that the mid-point discretization S0

recovers exactly the spectrum of the integral operator S. Namely, using n collocation points,
we obtain

σ (S0) = {−Lk, k = 0, . . . , n− 1}, (12)

i.e. the collocation matrix S0 reproduces exactly the first n eigenvalues of the integral operator
S. This result is proved in Appendix D.

Figure 1 shows the spectra of the matrices S0, S̃0 and also the spectrum computed using a
collocation scheme based on quadratic splines. The second and third spectra are computed nu-
merically for different discretizations yielding matrices of size n × n, where
n ∈ {50, 100, 200}. The differences in the spectra are significant and the variations are es-
pecially notable for the collocation based on spline-approximation.
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Figure 1. Spectra of the matrices S0 (‘–’), S̃0 (‘- -’) and of a matrix corresponding to a collocation scheme based
on quadratic splines (‘· · · ’) are plotted.

Equation (12) is the discrete analogoue of a corresponding result for the continuous case
and the proofs are similar, see [5,15]. The basis vectors sl are discrete monomials and
p ∈ span {sl, l = 0, . . . , k for k ≤ n − 1} can be regarded as a discrete polynomial of
degree k, if psk �= 0. In the derivation of (12) we find, that

S0[span{sl, l = 0, . . . , k}] = span
{
sl, l = 0, . . . , k

}
for all k ≤ n − 1. Hence, the matrix S0 maps discrete polynomials of degree k onto discrete
polynomials of degree k.

From the theoretical investigation of S performed in [5,15], we know that eigenfunctions
P̃k ∈ Pk exist such that S[P̃k] = −LkP̃k and P̃k = sk +∑k−1

j=0w
j

k−1P̃j . Thus, S diagonalizes

the basis of the polynomial eigenfunctions P̃k. Furthermore, S[sk] = −Lksk + qk−1(s) where
qk−1 ∈ Pk−1.

Using Gram-Schmidt orthogonalization, we can construct a basis {u0, . . . ,un−1} of eigen-
vectors that diagonalizes S0 out of the discrete monomials used in (12). Now, the question
arises, as to whether the numerical eigenvectors uk of S0 converge for fixed k and h → 0 to
the eigenfunctions P̃k of the operator S.

The following estimate proved in Appendix E yields an affirmative answer : Let k ∈ N0

and n > k. Then∥∥∥uk − R[P̃k]
∥∥∥ ≤ k(k − 1)

8

(
1 + k − 2

9

)
h2

k−1∑
j=0

1

Lk − Lj
. (13)

In summary, we have found that the numerical discretization S0 exactly reproduces the
spectrum of the continuous operator and the eigenvectors of the numerical scheme converge
to the eigenfunctions of the continuous operator.

3.4. CONVERGENCE OF THE COLLOCATION SCHEME

Next, we exploit the spectral properties of S0 and S to derive convergence results for the
numerical scheme. The continuous equation
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(C + S)[ϕ] = f, where S[ϕ](s) =
∫ 1

0

ϕ(t)− ϕ(s)

|t − s| dt, (14)

is replaced by its discrete counterpart

(C + S0)ψ = f , (15)

where f = R[f ] is the grid function associated to f . In a collocation point χi ∈ X, we obtain

(C + S)[ϕ](χi) =
n∑
j=1

(C + S0)i,jψ j .

Since C is a multiplication operator according to Equation (7), the matrix C is diagonal.

Hence C[ϕ](χi) = C(χi)ϕ(χi) =
n∑
j=1

Ci,j (Rϕ)j . Introducing the error e = R[ϕ] −ψ and the

matrix M = C + S0, we obtain∑
j

Mi,jej = S0(R[ϕ])− (R ◦ S)[ϕ].

In the case of C = c = const. and c �= Lk for k ∈ N, the eigenvalues of M are given by
{c − Lk : k = 0, . . . , n− 1}. In particular, the matrix M is invertible and

ei =
∑
j

M−1
i,j (S0(R[ϕ])− (R ◦ S)[ϕ])j .

Thus, we obtain the estimate

‖e‖ ≤ ∥∥M−1
∥∥∞ · ‖(R ◦ S)[ϕ] − S0(R[ϕ])‖ .

The second factor is equal to the approximation error of the collocation scheme and is bounded
by Kh2 for some K > 0 due to Equation (8). Considering the first factor, let ρ(M) denote
the spectral radius and λmin(M) be the eigenvalue of M with minimal absolute value. We have
‖M‖∞ ≤ √

nρ(M). For ‖M−1‖∞, we obtain

‖M−1‖∞ ≤ √
nρ(M−1) ≤ √

nλmin(M)−1.

Since C = c = const., the smallest eigenvalue of M is given by

λmin(M) = min
λ∈σ(S0)

|c + λ|.

For n large enough, i.e. for c − Ln < 0, this term is independent of n and bounded by some
constant K > 0. Summarizing the results, we obtain

‖e‖ ≤ K
√
nh2 = Kh3/2,

which indicates a convergence late of at least 3/2 for the collocation method. The numerical
results given in Table 2 exhibit a convergence rate of approximately 2. Whether this is a super-
convergence or the estimates can be sharpened can be investigated by finding direct bounds
for ‖M‖∞ without using the spectral norm as in the present approach.

If c = Lk for some k ∈ N, it is shown in [5] that there exist data f for which (14) has no
solution. This occurs when c = Lk for some k ∈ N, whereupon the matrix M is singular.
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Next we consider the case C �= const.. Until now, we used C(s) = C = const. to derive

lower bounds for the eigenvalues of M. In the case of non-constant C and 1
n

n−l∑
i=0
(RC)i �= Lk

for k ∈ N, we apply a perturbation argument, and apply the result for C = const.
We recall a result due to [22, p. 63] : Let A ∈ R

n×n be regular and E ∈ R
n×n be a

perturbation, such that ‖A−1‖·‖E‖ ≤ 1 Then A + E is regular and the estimate

‖(A + E)−1‖ ≤ ‖A−1‖
1 − ‖A−1‖ · ‖E‖ .

holds in any matrix-norm ‖ · ‖.

If C �= const., we define c = 1
n

n−1∑
i−0
(RC)i , � = C−cI,M = C + S0 and M̂ = cI + S0 and

apply the above result to the matrix M = �+ M̂, now viewed as a perturbation � applied to
the matrix M̂.

If ‖M̂−1‖ · ‖�‖ ≤ 1, then

‖M−1‖ ≤ ‖M̂−1‖
1 − ‖M̂−1‖ · ‖�‖ .

In particular

‖M−1‖∞ ≤
√
n

λmin(M̂)− max
i=0,... ,n−1

|Ci − c|) . (16)

Equation (16) is restricted to the case

max
i=0,... ,n−1

|Ci − c| ≤ λmin(M̂) = min
k∈N0

|c − Lk−1|.

For example, if c = 5, then mink∈N0 |c − Lk−1| = 0·1, whereas for c = 14,
mink∈N0 |c − Lk−1| ≈ 6·986 × 10−4 for k = 615.

4. Numerical treatment of the general Equation (1)

The discussion up to now has been concerned with a straight fiber exposed to normal or
tangential flow, corresponding to Equation (2). In this section, we briefly discuss the numerical
treatment of the more general Equation (1) rewritten as

f (s) = (C1(s)I + C2(s)et e
′
t )ϕ(s)∫ 1

0

[
ϕ(t)

R0
− ϕ(s)

|s − t| +
M0ϕ(t)

R3
0

− ete
′
tϕ(s)

|s − t|
]

dt.
(17)

First, we note, that for a C2-centerline x0,

R0 = ‖x0(s)− x0(t)‖ = |s − t| + κ

2
|s − t|2 + O(|s − t|3)

and
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M0

R2
0

=
(
R0

R0

)(
R0

R0

)′
= ete

′
t +

κ

2
|s − t|(ete′

n + ene
′
t + O(|s − t|2),

for t → s, where κ is the curvature of the centerline. The integral in (17) exists for α-Hölder-
continuous functions ϕ ∈ C0,α[0, 1] and α ∈(0,1]. That is, for t → s, the integrand of
(17) ‘reduces’ to that of (14). For t away from s, the integrand of (17) expresses the ef-
fect of the curvature of the fiber’s centerline. If the centerline does not self-intersect, i.e. if
‖x0(t) − x0(s)‖ ≥ K|s − t|, then the terms containing R−1

0 and R−3
0 in (17) cannot have

singularities for t �= s.
As already stated, an explicit spectral theory for (17) is presently not available. Neverthe-

less, since the collocation method using piecewise constant ansatz functions and mid-point
integration works well in the case of (2), a similar method can be used for solving (17).

Writing the components of (17) with respect to the global coordinate system in R
3, we ob-

tain a system of three coupled integral equations for the components (ϕ1, ϕ2, ϕ3) = ϕ. Using a
piecewise constant ansatz for each component and discretizing the integrals with the mid-point
quadrature formula, we obtain after some calculations a linear system (C + S0

full)ϕ = f ,


S11
0 S12

0 S13
0

S21
0 S22

0 S23
0

S31
0 S32

0 S33
0





ϕ1

ϕ2

ϕ3


 =



f1

f2

f3


 ,

for the components of ϕ.
In the case of (2) (e.g. the fiber is aligned to the z-axis and f = (f1, 0, 0)), the off-diagonal

blocks S12
0 ,S13

0 ,S21
0 ,S23

0 ,S31
0 ,S32

0 of the matrix C + S0
full drop out, and we obtain the familiar

discretization (cI + S0)ϕ1 = f1, yielding the only force component in x-direction.
Normally, the matrix C + S0

full is a full and non-symmetric matrix with dimensions (3n)×
(3n). If the fiber lies in a plane, i.e. if the torsion of the centerline vanishes, and if also the
right hand side f has only components in this plane, then the local coordinate system spanned
by the tangent et and the normal en of the fiber shall be used. In this situation, the binormal
vector eb is constant along the fiber. Using the decomposition of ϕ and f in the tangential and
normal directions, we obtain a reduced system with dimensions (2n)× (2n).

5. Numerical results

The proposed collocation method is applied to different test cases. The solution of Equation
(2), where the solution can be computed analytically using spectral methods is considered in
Section 5.1. Section 5.2 shows a comparison with the analytic solution for flow past slender
prolate spheroids, and Section 5.3 presents an example available from the literature requiring
the numerical solution of the general equation (1).

5.1. COMPARISON WITH SPECTRAL METHODS

First, we compare the collocation method with a spectral method proposed in [15]. This
method is based on an expansion of the right hand side f in terms of Legendre polynomials
and exploits the explicit knowledge of the spectral properties of the integral operator S. The
right-hand sides of Equations (2) are given by
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Table 2. L∞-error e∞, the convergence order γ , and L2-error e2 for f (s) and h1/5(s)

n Test case f Test case h1/5

e∞ γ e2 e∞ γ e2

50 1·3225 × 10−2 1·8765 × 10−3 2·9890 × 10−2 9·8854 × 10−4

100 3·6285 × 10−3 1·87 4·6120 × 10−4 8·5338 × 10−3 1·81 2·3864 × 10−4

200 9·5020 × 10−4 1·93 1·0672 × 10−4 2·2858 × 10−3 1·90 5·1680 × 10−5

400 2·4409 × 10−4 1·96 1·8061 × 10−5 5·9209 × 10−4 1·95 4·9725 × 10−6

Table 3. L∞-error ẽ∞ along with the convergence order γ̃ and L2-error ẽ2 for f (s) and h1/5(s) using

the alternative approximation S̃0

n Test case f Test case h1/5

ẽ∞ γ̃ ẽ2 ẽ∞ γ̃ ẽ2

50 3·1178 × 10−2 6·7005 × 10−3 6·9975 × 10−2 3·4469 × 10−2

100 1·9763 × 10−2 0·65 2·0394 × 10−3 4·3879 × 10−3 0·67 1·8684 × 10−2

200 1·1858 × 10−2 0·74 6·0923 × 10−4 2·5837 × 10−2 0·76 7·5078 × 10−3

400 5·4897 × 10−3 1·11 1·8528 × 10−4 1·1865 × 10−2 1·12 2·5611 × 10−2

f (s) := − sin(2πs),

hδ(s) := 1

π
arctan

(
2s − 1

δ

)
+ 1

2
.

The Legendre coefficients of the reference solution are obtained by use of MAPLE V
Release 4. The expansion in the Legendre polynomial basis is cut off with a L2-error less
than 10−5. For the function f (s) = − sin(2πs), the first 11 coefficients guarantee a L2-
approximation with an error of approximately 8·4 × 10−6. For hδ(s) = 1

π
arctan

(
2s−1
δ

) + 1
2

and δ = 5, the first 39 coefficients are needed and yield a L2-error of 7·8 × 10−6. For c = 5,
the solution is computed with L2-error less than 10−5.

The collocation method uses n = 50 to 400 collocation points, i.e. the mesh width ranges
between h = 0·02 and 0·0025. Computating the solution requires the inversion of a full
symmetric matrix with dimensions n× n.

Table 2 lists the errors of the numerical solution in the L∞- and L2-norm, both normalized
with the L∞- respectively L2-norm of the reference solution. For the error e∞, the numerical
convergence order γ is also given. The results show nearly quadratic numerical convergence
rates for the collocation scheme.

Table 3 shows the analogous results for the alternative approximation S̃0 to the integral
operator S.

5.2. FLOW PAST PROLATE SPHEROIDS

Next, we consider Stokes flow past slender prolate spheroids. Chwang and Wu [13] apply the
singularity method to derive the exact force density acting on a prolate spheroidal particle,
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Figure 2. Force density ϕ for an prolate spheroid with minor to major half axes ratio a in Stokes flow. Analytical
solution [13] (‘–’ and ‘- -’), and numerical solution of the integral equation (‘�’).

and show that the spatial distribution ϕ of Stokeslets is constant between the two foci of the
spheroid and the normal component ϕz resp. the tangential component ϕx are given by

ϕz = u∞,z

e2

−2e + (1 + e2)Le
, ϕx = u∞,x

2e2

2e + (3e2 − 1)Le
, (18a,b)

where u∞,z is the normal free-stream velocity and u∞,x is the tangential free-stream veloc-
ity. The eccentricity of the spheroid is e = √

1 − a2, a < 1 is the minor semi-axis and
Le = log 1+e

1−e .
We compare this solution to the numerical solution obtained using our collocation method.

The computations are carried out for ratio of minor to major half axes a ranging between 10−2

and 10−5 and the results are normalized with respect to the free-stream velocity u∞,x respec-
tively u∞,z. The numerical discretization uses n = 100 or 400 collocation points. The results
for the two discretizations are nearly indistinguishable. The computed force distributions ϕ
are constant up to machine precision along the centerline of the spheroid, in agreement with
the exact solution.

Thanks to the hint of a referee, we remark, that for a constant free-stream velocity, the
collocation scheme (15) reduces to f = u0, where u0 is an eigenvector eigenvalue L0.

Figure 2 shows the exact solution (solid line ‘–’ for cross-flow and dashed line ‘- -’
for tangential flow) and the numerical solution at discrete values for a (symbols ‘�’). The
results are in very good agreement. In Figure 3, the difference between the exact and the
numerical solution is plotted versus log a. The error of the numerical solution is found to
depend quadratically on the parameter a in the range a = 10−2 . . . 5 × 10−5. This (O)(a2)-
difference can be explained by recalling that the approximations for the integral equation (1)
was carried out up to terms of O(a). The different behavior of the error for smaller minor axes
a = 2·5 × 10−5 . . . 10−5 is most likely due to round off errors in the computation of Le. For

a = 10−5, the eccentricity e is equal to
√

1 − 10−10, and Le = log 1+
√

1−e2

1−
√

1−e2
≈ log 3·99×1010.
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Figure 3. Differences between analytical solution and numerical solution for a prolate spheroid in Stokes flow.

Figure 4 presents a comparison between the exact solution and the numerical computation
for different angles of attack. The angle of attack α is defined as the angle between the major
semi-axis of the spheroid and the free-stream direction. The angle α = 0◦ corresponds to
tangential flow, and the angle α = 90◦ corresponds to cross-flow. Intermediate cases require
the numerical solution of (1) viewed as a coupled vector-integral equation for the two force
components. The computations are done for minor to major axes ratio a = 10−3 and 10−4.

5.3. CIRCULAR ARC IN TRANSLATIONAL FLOW

Cox [24] considered the force exerted on a prolate spheroid with minor axis a, bent to a
circular arc subtended between the angles θ0 and θ1. The free-stream velocity is u∞ = e1, as
illustrated in Figure 5. Cox derived an expression for the force acting on the arc in the form
of an expansion in terms of 1/ log a. Johnson [18] derived an approximative solution obtained
using an iteration procedure applied to an integral equation similar to (17).

For a discretization with n = 400 collocation points, minor to major axes ratio a = 10−4

and angles θ0 = 20◦ and θ1 = 130◦, the resulting force based on Equation (17) was com-
puted numerically using the collocation method and the results are shown in Figure 5. Good
agreement is found with Johnson’s approximation (‘- .’) and satisfactory agreement with Cox’s
(‘- -’) asymptotic solution. The significant differences in Cox’s approximation near the ends
of the fiber are due to an inaccurate treatment of the fiber shape at the ends.

6. Conclusion and outlook

A collocation scheme for solving the Fredholm integral equations determining the forces den-
sity acting on a curved fiber with circular cross-section immersed in a Stokes-flow has been
presented. Our analysis has shown that in the case of straight fibers, the collocation scheme
based on the approximation (5) preserves the spectrum of the continuous integral operator.
For slender prolate spheroids (c = const.), the numerical solution converges quadratically
with respect to the grid size to the analytic solution. In the general case of a curved fiber
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Figure 4. Forces for a prolate spheroid in Stokes flow and different angles of attack α. Exact solution (‘–’ and
‘- -’), and numerical solution (‘�’ and ‘◦’) for minor to major axes ratio a = 10−3 and 10−4.

Figure 5. An ellipsoidal fiber shape with minor to major axes ratio a is bent to a planar circular arc subtended
between θ0 and θ1. The right figure shows the force in x-direction for θ0 = 20◦ and θ1 = 130◦, including asymp-
totic results due to Cox [24] (‘- -’), Johnson [18] (‘- .’) and the numerical solution of the integral equation (17)
(‘–’) for a = 10−4.

where the spectrum is not explicitly known and hence convergence results are not available,
the numerical solution shows good agreement with test cases available in the literature. In both
cases, the numerical computations require solving a system of linear equations with a full and,
in general, non-symmetric matrix. Advanced techniques involving approximating the system
matrix by hierarchical H -matrices [25,26] might be used to speed-up the calculations. An
extension of the proposed collocation scheme to the integral equations in the case of Oseen
flow is possible.
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Appendix A. Derivation of Equation (1)

In this appendix we describe the main steps in the derivation of the integral equation (1) using
slender-body approximation. For details, we refer to [5] or Keller and Rubinow [12].

Starting from the Stokes equations

div u = 0 and grad p − µ5u = f (A.1)

describing the linearized motion of a fluid in a domain 6 outside a fiber 6F , and using the
no-slip boundary condition u = u0 on the fiber surface, we make the following ansatz for the
flow-field :

u(x) = u∞(x)+
∫ L

0
(ω(x − x0(t); ν)ϕ(t)+ ω2(x − x0(t); ν)β(t)) dt, (A.2)

where u∞ is the free-flow velocity, L is the fiber centerline arc length, ω(x − x0(t); ν) is the
fundamental-solution (Stokeslet) of Stokes’s equation, and ω2(x − x0(t); ν) is the Stokeslet
doublet; ϕ and β are the distributions of the respective fundamental solutions. Explicitly

ω(x; ν) = 1

8πν

(
I
R

+ xx′

R3

)
,

where R = ‖x‖2 and

ω2(x; ν) = 1

8πν

(
I
R3

− 3
xx′

R5

)
.

Physically, a Stokeslet corresponds to the flow field generated in whole R
3 by a unit point

force located at the origin.
We expand (A.2) asymptotically in the ‘far field’ |t − s| � a and in the ‘near field’

|t − s| = O(a), and match the expansions, to derive the common part. A uniformly valid
composite expansion is then obtained by adding the far field and the near field expansions
and subtracting their common part. Now, the no-slip boundary condition can be applied to the
composite expansion which is valid along the whole centerline of the fiber. The radial sym-
metry of the boundary condition around the circumference of the fiber allows us to obtain an
expression for the distribution β of the doublets in terms of the distribution ϕ of the Stokeslets.
The remaining integral equation (1) determines the distribution of the Stokeslets.

Appendix B. Proof of Equation (8)

Let s, t ∈ [0,1], define ,s(t) = ϕ(t)−ϕ(s)
|t−s| with the convention ,s(s) = 0, and let

j ∈ {1, . . . , n}. We split the integral in S into n parts over [0, sj−1), [sj−1, sj ] and (sj , 1].
Similarly, we split the sum into n parts for i < j and i > j . For the second integral, we obtain
the estimate∫ χj

sj−1

,χj (t)dt = −
∫ χj

sj−1

,′(χj )+ t − χj

2
ϕ′′(ξχj ,−)dt

= −
[
ϕ′(χj )

2
h− ϕ′′(ξχj ,−)

16
h2

]
,

with ξχj ,− ∈ [sj−1, χj ] and
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χj

,χj (t)dt =
[
ϕ′(χj )

2
h+ ϕ′′(ξχj ,+)

16
h2

]
with ξχj ,+ ∈ [χj , sj ]. Addition yields∣∣∣∣∣

∫ sj

sj−1

,χj (t)dt

∣∣∣∣∣ = ∣∣ϕ′′(ξχ,−)+ ϕ′′(ξχ,+)
∣∣ h2

16
≤ ‖ϕ′′‖∞h

2

8
.

For the first integral and the first summand, we obtain∫ sj−1

0
,χj (t)dt −

∑
i<j

,χj (χi) =
∑
i<j

,′′
χj
(ξχj ,i )

h2

24

(
χj − h

2

)
,

and for the last integral and last summand, we obtain∫ 1

sj

,χj (t)dt −
∑
i>j

,χj (χi) =
∑
i>j

,′′
χj
(ξχj ,i)

h2

24

(
1 − χj − h

2

)
,

Furthermore for ξ < s,

,′′
s (ξ ) = ϕ′′(ξ)(s − ξ)2 + 2(s − ξ)ϕ′(ξ)+ 2(ϕ(ξ)− ϕ(s))

(s − ξ)3

= 1

(s − ξ)3

[
−(s − ξ)3

3
ϕ′′′(ξ̃ )

]
= −ϕ

′′′(ξ̃ )
3

with some ξ̃ ∈ (ξ, s). Similarly for ξ > s and ξ̃ ∈ (s, ξ), we obtain ,′′
s (ξ ) = ϕ′′′(ξ̃ )/3. Finally

‖(R ◦ S)[ϕ] − S0(Rϕ)‖ ≤


∥∥∥,′′

χj

∥∥∥∞
24

+
∥∥ϕ′′∥∥∞

8


 h2 ≤

(∥∥ϕ′′′∥∥∞
72

+
∥∥ϕ′′∥∥∞

8

)
h2.

Appendix C. Proof of Equation (10)

Analogous to the proof of Equation (8), we fix a collocation point χj ∈ X and split the integral
into a part over Zj and the remainder. For the integration over Zj , we find∣∣∣∣∣

∫
Zj

,χj (t)dt

∣∣∣∣∣ ≤ ∥∥ϕ′′∥∥∞ h2

8
,

using the notations from the proof of Equation (8).
For the remaining integration, we use

|ϕ(t)− ϕ(χi)| ≤
∥∥ϕ′∥∥∞ h

2
,

where t ∈ Zi , and obtain∣∣∣∣∣∣
∑
i �=j

∫
Zi

ϕ(t)− ϕ(χi)

|t − χj | dt

∣∣∣∣∣∣ ≤
∥∥ϕ′∥∥∞ h

2
log

χj (1 − χj )

h2/4
≤ ∥∥ϕ′∥∥∞ h log

1

h
,
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which dominates the error (C.1).

Appendix D. Proof of Equation (12)

We need the preliminary result : Let n, k ∈ N0, then ,

n∑
j=1

(2j − 1)k = 2knk+1

k + 1
−

k/2∑
µ=1

Cµ,kn
k+1−2µ,

where �r := maxn∈N0{n ≤ r} denotes the Gauss-bracket,
Cµ,k = B2µ

2µ 2k+1−2µ(22µ−1 − 1)( k

2µ−1 ) and Bn are the Bernoulli-numbers [27, Formula 0.122].

Now, let s =
(
i−1/2
n

)
i=1,... ,n

∈ R
n and s l = (

sli
)
i=1,... ,n for l = 0, . . . , n− 1.

Then since the matrix with the columns (s l)l=0,... ,n−1 is a Vandermonde-matrix,
{s0, . . . , sn−1} is a basis of R

n. Obviously, s0 ∈ ker S0.
Next, we show that for l ∈ {1, . . . , n − 1} we have S0s

l = −Lls l + pl−1, where
pl−1 ∈ span {s0, . . . , s l−1}. Define i′ = i − 1/2 and j ′ = j − 1/2. Then

(S0s
l)i = 1

nl

∑
i �=j

(j − 1
2 )
l − (i − 1

2 )
l

|j − i|

= 1

nl


 n∑
j=1

+δi,j − 2
i∑

j=1


(

l−1∑
k=0

i′l−k−1j ′k
)

= l(i′)l−1

nl
− 2

nl2l−1

l−1∑
k=0

(2i′)l−k−1
i∑

j=1

(2j − 1)k

+ 1

nl2l−1

l−1∑
k=0

(2i′)l−k−1
n∑
j=1

(2j − 1)k

= l(i′)l−1

nl
− 2

nl2l

l−1∑
k=0

(2i′)l−k−1

(
(2i)k+1

k + 1
−
∑
µ

2Cµ,ki
k+1−2µ

)

+ 1

nl2l

l−1∑
k=0

(2i′)l−k−1

(
(2n)k+1

k + 1
−
∑
µ

2Cµ,kn
k+1−2µ

)

= l(i′)l−1

nl
− 2

nl2l

[
(2i′)

l−1∑
k=0

1

k + 1︸ ︷︷ ︸
(∗)

−
l−1∑
k=0

(2i′)l−k−1 × .

×
(

1

k + 1

k+1∑
m=1

(
k + 1

m

)
(−1)m(2i)k+1−m +

∑
µ

2Cµ,ki
k+1−2µ

)]

+ 1

nl2l

l−1∑
k=0

(2i′)l−k−1

(
(2n)k+1

k + 1
−
∑
µ

2Cµ,kn
k+1−2µ

)

= −Lls l + pl−1.
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Note that the term (∗) is the only term that contains the vector s l . All the other terms are
linear combinations of the vectors s0, . . . , s l−1. Thus, writing S0 in the basis {sk}k=0,... ,n−1,
we obtain the following upper diagonal form

S0 =




0 ∗ . . . ∗
0 −L1 . . . ∗
...

...
. . .

...

0 0 . . . −Ln−1


 ,

where the entries marked by ∗ correspond to the representation of pl−1 with respect to the
basis {sk}k=0,... ,n−1. The eigenvalues of this upper triangular matrix are the diagonal elements.

Appendix E. Proof of Equation (13)

The construction of a basis (uk)k=0,... ,n−1, in which S0 diagonalizes consists of the following
two steps:

(1) Define u0 := s0. Then S0u0 = −L0u0.
(2) Define uk := sk + ∑k−1

j=0 r
j

k−1uj , where r
j

k−1 = p
j

k−1/(Lk − Lj) and

pk−1 = ∑k−1
j=0 p

j

k−1 uj .

Recalling Equation (12), i.e. S0s
k = −Lksk + pk−1 and using (R ◦ S)[sk] = −LkR[sk] +

R[qk−1] from [5,15], we obtain

‖pk−1 − R[qk−1]‖ ≤ ‖S0s
k − (R ◦ S)[sk]‖ ≤ Kh2 (E.1)

using the estimate (8), where

K ≤
∥∥(sk)′′′∥∥∞

72
+
∥∥(sk)′′∥∥∞

8
≤ k(k − 1)(k − 2)

72
+ k(k − 1)

8
.

Due to the construction of the eigenvectors uk , i.e. uk = sk+∑l−1
j=0 r

j

k−1uj and rjk−1 = − p
j
k−1

Lk−Lj
as well as pk−1 = ∑k−1

j=0 p
j

k−1uj , we derive the estimate

∥∥∥uk − R[P̃k]
∥∥∥ ≤

k−1∑
j=0

∥∥∥rjk−1uj − w
j

k−1R[P̃j ]
∥∥∥ ≤

k−1∑
j=0

∥∥∥pjk−1uj − q
j

k−1R[P̃j ]
∥∥∥

Lk − Lj

≤
k−1∑
j=0

‖pk−1 − R[qk−1]‖
Lk − Lj

,

and finally by (E.1)

∥∥∥uk − R[P̃k]
∥∥∥ ≤ k(k − 1)

8

(
1 + k − 2

9

)
h2

k−1∑
j=0

1

Lk − Lj
.
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